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ABSTRACT 
In this paper a new sampling three-term preconditioned PB algorithm is developed 

and implemented. 
The proposed sampling algorithm runs parallel to the original PCG Method Once a 

pair {vk, yk} has been computed by the PCG Method the new sampling algorithm 
examines the search direction and decides the suitable selected search direction for the 
proposed algorithm. Numerical results have been done for (50) well-known test functions 
with different dimensions. The new proposed algorithm is very effective and promising 
in general. 

  ــــــــــــــــــــــــــــــــــــــــــــــــــ

  ذات المقادير الثلاث النموذجية المشروطة  Powell-Bealخوارزمية 
  

  الملخص

.  المشروطة ذات المقـادير الـثلاث النموذجيـة    PBا البحث استحداث وتنفيذ خوارزميةتم في هذ

اب فحالما يـتم حـس    .  الاصلية PCGالخوارزمية النموذجية المقترحة تم تنفيذها على التوازي مع طريقة          

.  تقوم الخوارزمية النموذجية باختبار اتجاه البحث وتحديد الاتجاه المناسـب  PCG بطريقة {vk,yk}زوج 

واظهـرت النتـائج الاثـر      . دالة اختبارية معروفة بابعاد مختلفـة     ) 50(تم اجراء الحسابات العددية على      

  .جابي الفعال للخوارزمية الجديدةالاي

  ــــــــــــــــــــــــــــــــــــــــــــــــــ
INTRODUCTION 

The Conjugate Gradient Method: 
The basis of CG method is to determine new directions of search using information 

related only to the gradient of a quadratic objective function, in such away that successive 
search directions are conjugate with respect to the matrix G of that quadratic form. At 
each stage k the direction dk is obtained by combining linearly the gradient, at (xk, -gk), 
and the previous conjugate directions do,d1,…,dk-1, where the coefficients of the linear 
combination is chosen in such away the dk is conjugate to all previous directions. 

In order to improve the local rate of convergence and the efficiency of the classical 
CG methods, several established algorithms are discussed by Dixon’s (1975) gradient 
predictioned method, Nazareth’s (1977) three-term formula and Nazareth and Nocedal 
(1978a) multi-step method. They have all shown that such algorithms are able to generate 
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conjugate directions for a quadratic without performing exact searches. For non-quadratic 
models (See Al-Bayati, 2001). 

 
Powell–Beale Restart Algorithm: 

This method is one of the most popular conjugate gradient algorithms, which is 
used for minimizing nonlinear functions of many variables. 

Powell developed a new procedure for restarting CG method. He checked that the 
new direction dk+1 will be sufficiently downhill if: 

-1.2 ||gk+1||2 > gk+1 dk+1 > -0.8 ||gk+1||2   …(1) 
(See Powell, 1977). 
 
Powell–Beale Restart Algorithm: 
Step (1): for any starting point xk , k=1, ε 
Step (2): Set dk = -gk 
Step (3): Compute λk by using the line search procedure to minimize f(xk+λkdk) 
Step (4): xk+1 = xk + λk dk  
Step (5): Check for convergence if ||gk+1|| < ε Stop, otherwise. 
Step(6): if k>1 then  
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k = k + 1  
Goto Step (3)  
ENDIF 
Step (7): Check if k = n 
or  
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or  
-1.2 ||gk+1||2 > T

1kd + gk+1> -0.8 ||gk+1||2 
are satisfied then  
put k = 1 Goto step (2)  
otherwise  
set   k = k + 1 
Goto step (3) 

 
PRECONDITIONING WITH QUASI-NEWTON APPROXIMATION 

Preconditioning is a mean of improving the performance of CG methods.  
Effective Preconditioning requires second derivative information which is not 

available. However, approximate curvature information can be accumulated as it is in a 
Quasi-Newton method. The storage consideration is temporarily neglected so that n×n 
Quasi-Newton approximations may be used. With some conditions on the line search, 
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and for smooth nonlinear functions, the inverse Hessian approximation matrix Hk are 
positive definite and symmetric. 

In general, a constant preconditioner H must be used throughout to obtain quadratic 
termination with conjugate gradient method. However, the property of quadratic 
termination is retained when Quasi–Newton preconditioners are used. In the BFGS 
updating formula for minimizing a function f (See Fletcher, 1987) we are given a 
symmetric and positive definite n×n matrix Hk that approximates the inverse of the 
Hessian of f, and a pair of n-vectors vk = xk+1 – xk and yk= ∇f(xk+1)- ∇f(xk) satisfying the 
condition 0yv k

T
k > . Using this we compute a new inverse Hessian approximation Hk+1 

by means of the updating formula: 
T
kkkkk

T
k1k vvSHSH ρ+=+      …(2) 

where  
T
kkkkk

T
kk vyISvy/1 ρ−==ρ      …(3) 

We say that the matrix Hk+1 is obtained by updating Hk once using the correction 
pair {vk, yk}. 

Even if Hk is sparse, the new BFGS matrix Hk+1 will generally be dense, so that 
storing and manipulating it is prohibitive when the number of variables is large. To 
circumvent this problem, the limited memory approach makes use of an alternative 
representation of the updating process in which Quasi- Newton matrices are not explicitly 
formed it follows from (2) and (3) that if an initial matrix H is update m times using the 
BFGS formula and the m pairs {vi, yi}, i= k-1,…,k-m, then the resulting matrix H(m) can 
be written as: 
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Thus instead of forming H(m) we can store the scalars pi and the vectors {vi, yi}, 

i=k-1,…,k-m which determine the matrices Si (See Gill and Murry, 1981).  
The so-called BFGS method described in (See Nocedal, 1980; Gilbert and 

Lemarchal, 1989) updates Hessian approximation as follow. We first choose (usually 
diagonal) initial Hessian approximation H, and define the first m approximation through 
(4) as H(1),…, H(m). At this stage the storage is full, and to construct the new Hessian 
approximation, we first delete the oldest correction pair from the set {vi, yi}, to make 
room for the newest one, {vk, yk}. The new Hessian approximation H(m+1) is defined by 
(4), using the new set of pair {vi, yi}. This process is repeated during all subsequent 
iterations the oldest correction is removed to make space for the newest one. 
Theorem: Let f be a strictly convex quadratic function and assume the line search is 
exact.  
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Each of Hi, 1< i < k is obtained from HI+1 with θk >0.  
The initial approximation is H0=H, a positive-definite and symmetric matrix. Then 

the direction (5) identical to the conjugate gradient directions preconditioned by H, that 
is: 

 0k,d
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HgygHd k
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and thus an algorithm with these search direction has quadratic termination. For more 
details (see Al-Bayati and Shareaf,  2001). 

Nazareth and Nocedal (1978b) also showed that is not necessary to update the 
Hessian approximation at every iteration in order to have quadratic termination. The 
search direction (5) can also be used for general nonlinear functions. The matrices Hk+1 
have the property of hereditary positive definiteness as long as the line search guarantees 
that .0yv k

T
k >  

 
NEW SAMPLING THREE-TERM PRECONDITION PB-ALGORITHM 
We now present a formal description of the sampling algorithm that collects the pair 

{vk, yk} as uniformly as possible the sampling algorithm runs parallel to the PCG method 
once a pair {vk,yk} has been computed by the PCG method, the sampling algorithm 
examined the iteration index k and decides if the pair should be included in H  (we denote 
the set of correction pairs that have been stored as H). When a new pair is accepted the 
algorithms checks the available space, and if the number of pairs in H is m, then a pair is 
chosen to leave H. 

The Algorithm is started by inserting into H the first m pairs generated by the PCG 
process. After this, the entering and leaving pairs are chosen to keep an almost uniform 
distribution at any time. 

 
Some properties of the sampling algorithm: 

We now discuss some properties of the sampling algorithm. After the initialization 
in which the first m pairs are stored, the algorithm performs deletion and insertion 
operations controlled by the variable N1. For a given value of N1 the algorithm stored 
m/2 new pairs spaced by a distance 2N1, and deletes the same of number of pairs. 
Deletion takes place in such away that the space created between two consecutive pairs is 
2N1. Therefore when N1 attains a new value, the distribution cases to be uniform and 
there is a transition period during which a new uniform distribution is generated: this is 
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achieved at the end of the second loop. It follows that the larger m is, the longer it will 
take to move from one uniform distribution to the next (Morales and Nocedal, 1997). 

 
New Algorithm (Sample). 
Step (1): for any starting point x0, ε, N, M, k=1, N1=1. 
Step (2): Set   dk = −Hk gk 
Step (3): Set   ssk = dk. Compute λk by using line search procedure to minimize f(xk+λkdk) 
Step (4): xk+1 = xk + λkdk 
Step (5): Check for convergence if || gk+1||<ε then stop. 
Step (6): if k<M then  
update H by using Al-Bayati formula. 
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Step (7): if k = N  
or then0dg k

T
k ≥  

put k =1 Go to step (2)  
Else  

k= k+1 Go To Step (3)  
ENDIF 

ENDIF 
Step (8): If k = 1+ (M/2+L-1)*2**N1 

then  
k2 = 1+ (2*L-1) *2 **(N1-1) 
N1= N1+1 
Where L = 1,2, …, M/2 

Step (9): If k <k2 then  
s1= Hkyk 
Else  
s1= -Hkyk 

ENDIF 
Step (10): Update H by  
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Go To step (7). 
ENDIF. 
Go To step (6). 
 

NUMERICAL RESULTS AND CONCLUSIONS 
We shall discuss the computational results of the previous two algorithms (Powell–

Beale preconditioned algorithm and the new sampling algorithm). 
They are both written in Fortran 77 by using the computer “Pentium I” with double 

precision. The line search routine employed is the cubic fittings technique, fully 
described by (Banday, 1984). The stopping criterion is taken to be || gk+1|| 2 < 2×10-5. 

The comparison test involves 50 well- known test functions, by considering both 
the TOTAL no. of function evaluations and the total no. of iterations. The results are 
reported in tables (1), (2), (3) with different dimensions. 

Table (1) for (low dimensions)   4<n<40. 
Table (2) for (medium  dimensions)  42<n<100 . 
Table (3) for (high dimensions)   200 < n < 500. 

Our numerical results indicate, in general, that the new proposed sampling 
algorithm is always improves the standard preconditioned PB-algorithm.  

From Table (1) taking the standard preconditioned PB-algorithm as 100% NOI and 
NOF the new algorithm improves this standard one in about 50% NOI and 62% NOF  for 
four selected versions namely (m = 1, 9, n/2 and n). 

Clearly Table (2) deals with medium size test problems and the new algorithm (for 
all versions) has an improvement of about 56% NOI and NOF. 

Finally, our numerical results in Table (3) show that there are an improvement of 
about 40% NOI and 45% NOF according to our calculations and our selected test 
functions. 

In general, the new algorithm is promising in the filed of unconstrained 
optimization. 
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 Table 1: Comparison of algorithms for 4 < n < 40 
New sampling algorithm 

n Test function Standard PPB 
NOI (NOF) m=1 

NOI (NOF) 
M=9 

NOI (NOF) 
m=n/2 

NOI (NOF) 
m=n 

NOI (NOF) 
Wood 59(187) 13(28) 13(28) 15(36) 13(28) 
Powell 21(72) 17(41) 17(41) 30(62) 20(69) 
Wolf  11(31) 9(19) 9(19) 10(22) 10(22) 
Rosen 22(73) 16(40) 16(40) 9(25) 13(34) 
Dixon 10(32) 10(30) 10(30) 10(31) 10(29) 

4 

Cubic 19(58) 12(31) 12(31) 15(36) 13(34) 
Wood 82(248) 13(28) 13(28) 16(35) 13(28) 
Powell 29(101) 20(48) 32(66) 34(74) 32(66) 
Wolf  17(39) 15(31) 16(33) 17(41) 16(33) 
Rosen 43(132) 14(36) 15(39) 16(41) 15(39) 
Dixon 16(44) 15(43) 15(43) 17(50) 15(43) 

8 

Cubic 41(168) 11(32) 11(32) 11(31) 11(32) 
Wood 19(47) 13(28) 13(28) 14(40) 13(28) 
Powell 35(104) 27(62) 22(57) 25(61) 28(66) 
Wolf  27(58) 26(53) 28(72) 28(64) 27(55) 
Rosen 34(89) 14(36) 15(39) 14(38) 14(36) 
Dixon 25(70) 21(65) 21(65) 21(65) 22(68) 

20 

Cubic 44(472) 11(32) 11(32) 11(32) 11(32) 
Wood 23(55) 13(28) 14(33) 13(28) 13(28) 
Powell 38(105) 28(63) 23(60) 29(65) 28(63) 40 
Cubic 43(103) 11(32) 12(34) 11(32) 11(32) 

Total 658(2288) 329(866) 338(850) 366(909) 358(865) 
* PPB stands for preconditioned Powell-Beale algorithm. 

 
 

Table 2: Comparison of algorithms for 42<n<100  
New sampling algorithm 

N Test function
Standard 

PPB  
NOI (NOF) 

m=1 
NOI(NOF) 

m=9 
NOI(NOF) 

m=n/2 
NOI(NOF) 

m=n 
NOI(NOF) 

42 Rosen 40(97) 14(36) 15(39) 14(38) 14(36) 
Wood 24(60) 13(28) 14(33) 13(28) 13(28) 
Powell 47(125) 27(62) 34(70) 27(62) 27(62) 
Rosen 52(120) 14(36) 15(43) 14(36) 14(36) 
Dixon 34(98) 23(72) 24(76) 23(72) 23(72) 0 
Cubic 47(133) 11(32) 12(34) 11(32) 11(32) 
Wood 23(55) 13(28) 14(30) 13(28) 13(28) 
Powell 48(141) 28(62) 34(72) 28(62) 28(62) 
Wolf  75(153) 41(83) 42(85) 42(86) 41(83) 
Rosen 52(126) 14(36) 15(43) 14(36) 14(36)     80 

Dixon 34(98) 22(69) 24(82) 22(69) 22(69) 
82 Cubic 63(154) 11(32) 12(34) 11(32) 11(32) 

Powell 52(162) 27(61) 33(73) 27(61) 27(61) 
Wolf 86(175) 42(85) 42(85) 42(85) 42(85) 
Rosen 64(163) 14(36) 15(39) 14(36) 14(36) 
Dixon 34(97) 22(69) 24(88) 22(69) 22(69) 

100 

Cubic 75(199) 11(32) 12(34) 11(32) 11(32) 
Total 857(2156) 347(859) 381(960) 348(864) 347(859) 
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Table 3: Comparison of algorithm for 200<n<500  

New sampling algorithm 
n Test 

function 

Standard 
PPB  

NOI (NOF) 
m=1 

NOI(NOF) 
m=9 

NOI(NOF) 
m=n/2 

NOI(NOF) 
m=n 

NOI(NOF) 
Powell 52(149) 29(66) 28(73) 29(66) 29(66) 
Dixon 39(109) 22(68) 22(68) 22(68) 22(68) 
Edgar 7(19) 7(18) 7(18) 7(18) 7(18) 
Wolf 78(168) 43(87) 43(87) 43(87) 43(87) 

200 

Rosen 37(92) 14(36) 15(39) 14(36) 14(36) 
Powell 47(121) 26(60) 33(68) 26(60) 26(60) 
Dixon 38(107) 22(68) 22(68) 22(68) 22(68) 300 
Edgar 7(19) 7(18) 7(18) 7(18) 7(18) 
Powell 49(133) 27(63) 28(76) 27(63) 27(63) 400 Dixon 38(104) 22(68) 23(73) 22(68) 22(68) 

500 Edgar 7(19) 7(18) 7(18) 7(18) 7(18) 
Total 406(1059) 233(588) 242(624) 233(588) 233(588) 

• PPB stands for preconditioned Powell-Beale algorithm. 
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