
------ Raf. Jour. Sci., Vol.17, No.1, pp.50- 58, 2006 ------

50

A Parallel Optimization Method Based on the Theory
of Parallel Subspaces

 Bashir M. Khalaf Khalil K. Abbo
 Department of Mathematics College of Computer Science

College of Education & Mathematics
Mosul University Mosul University

 (Received 12/8/2001 , Accepted 27/10/2001)

ABSTRACT
The purpose of this paper is to develop a parallel algorithm for solving

unconstrained optimization problems. This parallel algorithm in which several tasks may
be executed at the same time in parallel based on the parallel subspaces theorem and it's
designed to run on MIMD computing systems.

 ــ

 طريقة أمثلية متوازية مبنية على نظرية الفضاءات الجزئية المتوازية

 الملخص

 تم في هذا البحث تطوير خوارزمية متوازية في الأمثلية غير المقيدة أعتمد على نظرية الفضاءات

 .MIMDاسبات المتوازية من نوع هذه الخوارزمية مصممة للح. الجزئية المتوازية

 ــ
INTRODUCTION

In recent years as microprocessor have become cheaper and technology for
interconnecting them has improved, it has become possible and practical to build general
purpose parallel computers containing a large number of processors. There has been burts
of activity in the developing the hardware, the algorithms and theoretical models to make
use of parallel computers.

In this paper we discuss the development of parallel algorithm based on steepest
descent and parallel subspace algorithms, designed to run on MIMD (Multiple Instruction
Multiple Data) system. The MIMD system are consisting of several processors where
each processor can independently run it's own instructions and these processors are
connected with each other by suitable communication network, for more detail see
(Khalaf and Hutchison, 1991) and (Khalaf and Hutchison, 1992).

For minimizing differentiable non-linear functions consider the unconstrained
optimization problem:

 Minimize (1) x),(nRxf ∈

Bashir M. S. Khalaf and Khalil K. Abbo 51

Where)(xf is objective function, assumed to be continuously differentiable and
denote to the gradient vector)(xf∇ by).(xg one of the oldest and most widely known
methods for solving eq(1) is the method of Steepest Descent (often refered to as the
gradient method). The method is extremely important from theoretical view point. Since
it's one of the simplest for which satisfactory analysis exists and it is behavior for general
function is similar to it's behavior for quadratic function (Luenberger, 1973).
 The summary of Steepest Descent is given below:

Algorithm (1) (Steepes Descent.algorithm).
It is assumed that an estimate 0x of a minimizer *x of f is known and set
tolearns ε >0
Step-1: set k = 0
Step-2: compute kd from
 (2) kk gd −=
Step-3: compute kα from
 (3) (min()) kkkkk dxfdxf αα α +=+
Step-4: compute 1+kx from
 (4) 1 kkkk dxx α+=+
Step-5: if ε≤+ 1kg , stop otherwise
 Set k = k+ l and go to step 2
Search direction kddd ,...,, 21 generated by algorithm (1) are downhill also the sequence
{ }kx generated by Steepest descent algorithm. Converge to point x at which).(xg =0. See
(Wolfe, 1978).

Theorem (1) (Steepest Descent-Quadratic Case)
For any n

0 R ∈x algorithm (1) converges to the unique minimum point *x of f.
furthermore with
)()()(**

2
1 xxQxxxE T −−=

there holds at every step k

≤+)(1kxE ⎟
⎠
⎞

⎜
⎝
⎛

+
−

aA
aA 2)(kxE

Where a and A are respectively the smallest and largest eigenvalues of nxn positive
definite matrix Q.
(For proof see Luenberger, 1973). In general the convergent property which is derived for
quadratic problem in theorem (1) can be translated into similar one for non-quadratic
problem. (Luenberger, 1973).

1. Parallel subspaces Method:
 The parallel subspaces algorithms depend upon the parallel subspaces theorem. The
first algorithm which used this theorem was proposed by Smith (1962), later in 1964
powell proposed another algorithm based on parallel subspaces theorem.
Hestenes 1980 re-defined the subspaces theorem in terms of parallel planes, which states
as follows.

A Parallel Optimization Method Based on the …… 52

Theorem (2):
Let kx and kx be the minimum points of F where F, is a quadric function on two

distinct parallel (k -1)-planes Π −1k and 1−Π k . The vector
(5) kkk xxd −=

Is conjugate to these (k-1) planes. The minimum point 1+kx of F on the
line kk dxx α+= through kx and −

kx affords a minimum to F on the
K-plane Πk = Πk-1 + kdα . spanning 11 & −− ΠΠ kk .
for the proof see Hestenes 1980.
This result is represented schematically in figure (1).

Figure 1

The result described in theorem (2) suggests that the minimum point of f can be
found by the following procedure.

Select an initial point 1x and obtain the minimum point 2x of f on a line
 1Π through 1x . Next find the minimum point 2X of f on the line 1Π parallel and distinct
from 1Π . Then minimize f on the line joining x2 to 2X to obtain the minimum point x3 of
f on the 2-plane 2Π spanning 1Π and 1Π . W e proceed by finding minimum point 3X on
a 2-plane 2Π parallel to 2Π and determining the minimum point x4 on the line joining x3
to 3X .

The point x4 minimizes f on 3-plane 3Π spanning 2Π and 2Π . Proceeding in this
manner we obtain the minimum points x2, x3...xn+1 of f successively on planes

1Π , 2Π …, nΠ since nΠ is the whole space the minimum point 1+nx of f on nΠ is the
minimum point x* of f. The procedure just described was the method of parallel
subspaces.

2. New Parallel Optimization Method
 Steepest Descent and Parallel Subspace methods mentioned earlier can be combined
in a parallel optimization algorithm to run on machines that have more than one
processors working on one problem at the same time to reduce the solution time of the
problem by parallel processing.

Bashir M. S. Khalaf and Khalil K. Abbo 53

 We well use some simplifying notations such as k
iX which means that the value of x in

processor i at iteration k, similar notation used for gradient vector for g(k
iX) = ∇f (k

iX
). We can now summarize the new algorithm as follows select initial points 0

iX , i=1,.....,
m where m is the number of the processors contained in the computer and select an
arbitrary directions say 0

id where 0
1d // 0

2d //// 0
md . To obtain the minimum points

)1(
iX (i = 1,2,......,m) of the objective function on the parallel and distinct lines iΠ (i =

1......... m) see figure (2).

 Fig.2: The diagram of the new method

Next fined new search directions from
 k

i
k
i gd −= k > o …………………..(6)

perform a line search along the directions k
id to find new points

 k
i

k
i

k
i

k
i dxx α+=+1 (7)

where k
iα optimal step size. For next iteration

Set 1
12

1
2

1 +
−

++ −= k
i

k
i

k
i xxd i = 1,......, m/2(8)

Then minimize f on the directions 1+k
id to obtain the minimum points 2+k

iX .
Proceeding in this manner we obtain the minimum point *

mX of the objective
function. The outline of the algorithm given below

2x

A Parallel Optimization Method Based on the …… 54

Algorithm (2)
set: k = l, 1−k

ix , 1−k
id , ε , (i = l,, m)

fined k
ix (i = 1........ m) from equation (7)

Step-1: calculate k
ig and fined k

id from equ. (6)
Step-2: use eq (7) to obtain new points
Step-3: if ║ 1+k

ig ║<ε for some i, stop. Otherwise continue
Step-4: use eq. (7) and (8) to find new k

id and k
iX i = 1, . . ., m/2

Step-5: k = k + l, m = m/2 go to step-1
 The steps (1) to (5) are repeated until the point t

mX (t >k) is obtained in processor
pm. If t

mX is not the minimum point then pm well finds new direction say t
md and

sends the value of t
md to processors p1, ..., pm-1 as initial direction and processes

repeated.
 To run the algorithm (2) on parallel computer we must connect the processors as seen
in figure (3)

Fig. 3: The communication path of the processors

Where the processors P1,…, Pm (for no lose of generality we assume m is even) are

operating in parallel and computing in two stages :
First stage: all processors are runs and computes)1(

ix ,)1(
ig ,)1(

id and)2(
ix , i=1,…,m, if

convergent is not obtained, then each processor p2i-1 sends values to processor P2i (i = l,
....... m/2) second stages processor P2i receives values from p2i-1 i = 1,..., m/2 to compute
new directions from eq (8) and new points from eq (7). Then check for convergent
otherwise processor p2i-2 sends values to P2i. The process repeated until 1+k

mX obtain in the
Pm.
We can formalize this parallel algorithm on MIMD computing systems as follows:

Bashir M. S. Khalaf and Khalil K. Abbo 55

P1 P2 To p4 Pm-2

1- set ε,d,X 0
1

0
1 1- set ε,d,X 0

2
0
2 1- set ε−− ,d,X 0

2m
0

2m
2- for k≥1 find

k
1

k
1

k
1 d,g,X

 2- for k≥1 find
k
2

k
0

k
2 d,g,X

 2- for K≥1 find
k

2m
k

2m
k

2m d,g,X −−−

3- compute 1k
1X + from

line search
 3- compute 1k

2X + from
line search

 3- compute
1k
2mX +

− from line search

4- save 1k
1X + as 0

1X
and send the value of

1k
1X + to p2

 4- receive value of
1k

1X + by P1 and find
new 1k

2d + from
1k

1
1k

2
1k

0 XXd +++ −=

 4- receive value from
Pm-3 and find new

1k
2md +

− from
1k
2m

1k
2m

1k
2m XVd +

−
+
−

+
− −=

5- receive value from
Pm

 5- compute 2k
2X + by

line search
 5- compute 2k

2mX +
− by

line search
6- if convergent is not
obtained ? go to 2

 6- save 2k
2X + as 0

2X
and send the value of

1k
0X + to P4

 6- save 2k
2mX +

− as 0
2mX −

and send the value of
2k
2mX +

− to Pm
 7- receive value from

Pm
 7- receive value from

Pm
 8- if convergent is not

obtained go to 2
 8- if convergent is not

obtained go to 2

From Pm-3

Pm-1 Pm
1- set ε−− ,d,X 0

1m
0

1m 1- set ε,d,X 0
m

0
m

2- for K≥1 find k
1m

k
1m

k
1m d,g,X −−− 2- for K≥1 find k

m
k
m

k
m d,g,X

3- compute 1k
1mX +
− by line search 3- compute 1k

mX + from line search

4- save 1k
1mX +
− as 0

1mX − and send the value
of 1k

1mX +
− to Pm

 4- receive value from Pm-1 and find
new 1k

md + from 1k
1m

1k
m

1k
m xxd +

−
++ −=

5- receive value from Pm 5- compute 2k
mX + by line search

6- if convergent is not obtained go to 2 6- if convergent is not obtained find
new 2k

md + and send the value of 2k
md +

to processors p1, ……, pm-1 as intial
direction and go to 2

A Parallel Optimization Method Based on the …… 56

3- Numerical Examples:
Since the parallel computers are not available, we tried to solve two examples by

hand, for simplicity we use two processors (m=2).
 Let us consider the following unconstrained optimization problems (See Mokhtar, 1993).

Example (1):
Minimize f(X1-X2)=(2X1-X2)2+(X2+1)2

Processor (1) Processor (2)

1- set ε⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ,

0
1

d,
2
5.2

x 0
1

0
1

1- set ε⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ,

0
1

d,
3
1

x 0
2

0
2

2- fined 1
1

1
1

1
1 d,g,x

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

5
0

d,
5
0

g,
2
1

x 1
1

1
1

0
1

 2- fined 1
2

1
2

1
2 d,g,x

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

7
0

d,
7
0

g,
3
5.1

x 1
2

1
2

1
2

3- from 1
1d fined 2

1x

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

5.0
0.1

x 2
1

 3- from 1
2d fined 2

2x

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1
5.1

x 2
2

4- check for convergent 4- receive value from P1

5- send value of 2
1x to P2 5- fined new search direction from

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−=

5.0
5.0

xxd 2
1

2
2

2
2

 6- fined new 3
2x from

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=α−=
1
5.0

XX 2
2

2
2

3
2 which is true

minimum for f(X1,X2)

Bashir M. S. Khalaf and Khalil K. Abbo 57

Example (2):
Minimize f(X1-X2)=(X1-2)4+(X1-2X2)2

Processor (1) Processor (2)

1- set ε⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ,

0
1

d,
3
0

x 0
1

0
1

1- set ε⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

= ,
0
1

d,
2
1

x 0
2

0
2

2- calculate 1
1x from 0

1
0
1

0
1

1
1 dxx α+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==α

3
123.3

x,128.3 1
1

0
1

 2- calculate 1
2x from

0
2

0
2

0
2

1
2 dxx α+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

==α
2

673.0
x,673.1 1

2
0
2

3- fined ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
=−=

488.11
003.0

g,gd,g 1
1

1
1

1
1

1
1

fined

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=α+=

56437.1
1276.3

x,dxx 2
1

1
1

1
1

1
1

2
1

 3- fined

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=−=
692.18
001.0

g,gd,g 1
2

1
2

1
2

1
2 fined

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=α+=
2

673.0
x,dxx 2

2
1
2

1
2

1
2

2
2

4- send value of 2
1x to processor 2 4- receive value from P1

 5- fined 2
2d from 2

1
2
2

2
2 xxd −=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
2278.1
4546.2

d2
2

6- ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=α−=

1
2

dXX 2
2

2
2

2
1

3
2 which is

true minimum for f(X1,X2)

From the solution of the examples (1) and (2) we see that in the first iteration two
processors are runs and obtains two minimum points 2

1X in p1 and 2
2X in p2, then

processor p1 sends the value of 2
1X to processor p2 to compute new direction 2

2d and new
minimum point 3

2X which is true minimum point. These examples shows the new
method reduces the solution time required to solve the problem, clearly the total time
needed to solve any problem depends on the number of the processors.

A Parallel Optimization Method Based on the …… 58

CONCLUSIONS
In this paper, we had developed a new method using the theory of steepest descent

and theory of parallel subspace method. The parallel tasks are illustrated by mean of
practical examples.
The expected speed – up factor of the new method is demonstrated.

REFERENCES

Hestenes, M.R., 1980. Conjugate Direction Method in Optimization, Spring-Verlage. New
York, Heiddberg. Berlin.
Khalaf, B.M. and Hutchison, 1991. Parallel Algorithm for Solving IVPs, J. of Parallel

Computing. Vol. 17. 957 p.
Khalaf, B.M. and Hutchison, 1992 Redusing the Solution Time of Liner Meth. Models by

Using a Transputer Applications Based System. Parallel Computing and Transputer
Applications M. Valero et al (Eds))Barcelona. pp148.

Luenberger, D.C. ,1973. Introduction to Linear and non – Linear Programming. Addison
Wesley. Reading. Mass.

Mokhtare, B.S., 1993. Non-Linear Programming Theory and Application, by John Wiley
and Sons. Inc. Second Edition.

Powell, M.J.D., 1964. An Efficient Method for Finding the Minimum of a Function of
Several Variables Without Calculating Derivatives,Computer Journal. Vol. (6).

Smith, C., 1962. The Automatic Computation of Maximum Like-Lihood estimates, Wolfe,
A.M., 1978. Numerical Methods for Unconstrained Optimization. An Introduction.
By Van Nostrand Company. Englewood Cliffs. N.J. USA.

