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ABSTRACT 

 A Mathematical model describing lattice vibration is built for solid state lattice. The 
lattice considered consist of two crystal slabs with different atoms. Difference equation 
method formed the building stone of the model. Results of calculation indicate good 
agreement with results obtained by other authors.  
 ــــــــــــــــــــــــــــــــــــــــــــــــــــــ

  دراسة نظرية للاهتزازات الطولية لشريحتين بلوريتين مرتبطتين مع بعضهما 

  باستخدام معادلات الفرق  
  

  الملخص

تم اختيار شبيكة تتكون من شريحتين . ةتم بناء نموذج رياضي لوصف الاهتزازات الشبيكية لشبيكة صلب

أظهرت . من ذرات مختلفة واستندت الدراسة على استخدام معادلات الفرق في بناء النموذج الرياضي

  .الحسابات وجود اتفاق جيد مع نتائج البحوث الأخرى لهذا النوع من الشبيكة

 ــــــــــــــــــــــــــــــــــــــــــــــــــــــ
INTRODUCTION 

A crystal may be viewed as large number of point atoms which are arranged in space 
in a regular lattice sites by small distances impaled by harmonic forces of interaction with 
their neighbors (Rosenstock,1955;Ghatak and Kothari,1972;Patterson, 1971). Study of 
atomic and lattice vibration in a particular crystal can lead to useful information 
concerning many physical phenomena. Such phenomena include spin-lattice relaxation, 
neutron scattering, … etc. 

As an example for crystal lattice, many authers studied a one-dimensional linear 
atomic chains (Wallis, 1956; Gazis and Wallis, 1962; Grosse et al., 1981; Mossa, 2003). 

The vibrational problem of slab-shape diatomic ionic crystal is studied in the 
harmonic approximation and retardation effect by (Fuchs and Kliewer, 1965; Kliewer and 
Fuchs, 1966; Lucas, 1968; Grosse et al., 1981). Lucas used Kellermann’s model, which 
consist of point-charge ions interacting through a nearest neighbor repulsive forces and 
long-range dipole-dipole forces. 
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In the present work we consider a model similar to Lucas model of two crystal slabs, 
which consist of two double linear chains coupled together as shown in (fig.1). we assume 
that the particles are held together by elastic forces obeying Hook’s law, and these particles 
execute longtudinal vibrations only. 

In the present work we neglected the attraction force between the upper and lower 
atoms in the slabs, because we interested in the longitudinal vibrations only, and we 
considered the two slabs so thin as possible because each slab consists of two long linear 
chains,and the correction made by τ and τ2 is very small, and not make a larger difference 
in the coupling constants.  

 
 
 
 
 
 
 
 
 
 

Fig.1: A Model of two Crystal Slabs coupled through nearest neighbor forces. 
 
 

The first double chain consist of identical particles of mass m, lying in the lattice 
points from (-N to 0) lattice point. The second double chain consist of identical particles of 
mass M, (m ≠M), lying in the lattice points 1 to p. 

For the coupling constants see (fig.1) 
β1, η1, τ1 are the force constants for the first double chain. 
β2, η2, τ2 are the force constants for the second double chain. 
β, τ   are the force constants between the two double chains. 

 
Equations of Motion for Lattice Vibrations and their Solutions: 

As the system considered is of two coupled double chains, one needs to evaluate a 
two dimensional lattice. We may choose the 0 number lattice point as an origin, the points 
on the right of it are numbered 1, 2, …,p and those on the left are numbered –1,        -2, …, 
-N. As we are limited with nearest neighbor interaction, then the displacement of the nth 
particle from its equilibrium position will be denoted by Un. Since we have assumed that 
the forces between particles obeys Hookes law, the energy of interaction between any two 
particles will be a function of the displacement between them only. So the equation of 
motion of these particles at any time build a system of (p+N+1) homogenous differential 
equations (Mossa, 2003).  
1. For lattice point n = -N, we obtain:  

( ) ( )1NUNU11NUNU1NUm +−−−τ−+−−−β−=−
&&   (1) 

for the time dependence of Un we use the factor exp(-iωt) (Patterson, 1971; Mossa, 
2003). Then we can write the time independent difference equation for (1) as follows 
(mω2 - γ ) U-N + γ U-N+1 = 0  (2) 
where γ = β1 + τ1 ( which is a constant) 

m  

η1  

m  M 

-N  -N+1  

β1  

τ1 

-1  0 

τ
β

1 2 

M 

η2  
τ2 

β2 

p-1  p 



Theoretical Study of Longtudinal Vibrations of …  

 

91

2. For the lattice points  –N+1 ≤ n ≤ -1, we obtain:  
( ) ( )1n1nn11n1nn1n UUU2UUU2Um −+−+ −−τ−−−β−=&&   (3) 

Then the time independent equation for (3) is as follows 

0UU2mU 1nn

2

1n =+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

γ
ω

+ −+   (4) 

Equation (4) is second order difference equation. Using the general theory of 
difference equations (Valenta and Jager, 1977; Valenta and Jager, 1981, Gasagronde, 1981; 
Jager et al., 1988; Mossa, 2003) with n

nU λ= . We can write the characteristic equation 
for equation (4) in the following form 

024 1nn
2
max

2
1n =λ+λ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

ω
ω

+λ −+   (5) 

where 

m
42

max
γ

=ω  

Then, after dividing by λn-1, we obtain  

0124
2
max

2
2 =+λ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

ω
ω

+λ   (6) 

 which has the following solutions 

2
max

2
2
max

2
max

2

2/1
221 ω−ω

ω
ω

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ω
ω

−=λ m   (7) 

These solutions are complex conjugate and the general solution for difference 
equations (4) is given by  

ni
2

ni
1n ececU ϕ−ϕ +=   (8) 

c1 and c2 are constants  
where 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ω
ω

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ω
ω

−
ω

ω

=ϕ

2
max

2

2/1

4
max

4

2
max

2

21

44

tan   (9) 

 
3. For the origin lattice point  n = 0 , we have 

( ) ( ) ( ) ( )111111 UUUUUUUUUm −τ−−τ−−β−−β−= ο−οο−οο
&&   (10) 

The time independent equation for equation for (10) is giving by 
( ) 0UUUm 11

2 =α+γ+α−γ−ω −ο   (11) 
where α = β + τ  ( which is a constant) 

 
 
4. For the point n = 1, we obtain 
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( ) ( ) ( ) ( )212o1212o11 UUUUUUUUUm −τ−−τ−−β−−β−=&&   (12) 
And its time independent equation is of the form 
( ) 0UUUM 21

2 =α+µ+α−µ−ω ο   (13) 
Where µ = β2 + τ2    (which is a constant) 

 
5. For lattice points  2 ≤ n ≤ p-1 , we obtain  

( ) ( )1n1nn21n1nn2n UUU2UUU2UM +−+− −−τ−−−β−=&&   (14) 
And the time independent equation for (14), has the following form 

0UU2MU 1nn

2

1n =+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

µ
ω

+ −+   (15) 

Which is a second order difference equation, and after using general theory of 
difference equations (Valenta and Jager, 1977; Valenta and Jager, 1981; Jager et al., 1988), 
we find that  

024 1nn
2
max

2
1n =λ+λ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

ω
ω

+λ −+   (16) 

Where 
M
42

max
µ

=ω  

Then, after dividing by λn-1 , we obtain 

0124
2
max

2
2 =+λ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

ω
ω

+λ   (17) 

Which has the following solutions 

2
max

2
2
max

2
max

2

2/1
221 ω−ω

ω
ω

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ω
ω

−=λ m   (18) 

Which are complex conjugate solutions 
Then, the general solution of the difference equation (15) has the following form 

ni1
2

ni1
1n ececU θ−θ +=   (19) 

Where 1
1c ,  1

2c  are constants, and  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ω
ω

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ω
ω

−
ω

ω

=θ

2
max

2

2/1

4
max

4

2
max

2

21

44

tan   (20) 

 
6. For the lattice point  n = p, we obtain 

( ) ( )1pp21pp2p UUUUUM −− −τ−−β−=&&   (21) 
And its time independent difference equation is of the form 
(Mω2 - µ ) Up + µ Up-1 = 0  (22) 
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When we substitute the general solution for the first crystal slab from equation (8) 
into the boundary lattice point –N and its nearest neighbor (-N+1), we obtain the relation: 

c2 = c1 e –iϕ (2N+1)  (23) 
Similarly, after substituting the general solution for the second crystal slab from 

equation (19) into the another boundary lattice point p and its nearest neighbor (p-1) , we 
obtain the relation  

)1p2(i1
1

1
2 ecc +θ=   (24) 

Using the general solutions from equations (8) and (19), we can write 
)(i

2
)(i

1 ececU οϕ−οϕ
ο +=  

ϕϕ−
− += i

2
i

11 ececU  (25) 
θ−θ += i1

2
i1

11 ececU     
θ−θ += 2i1

2
2i1

12 ececU                   
When we substitute equations (25) into equation (11) and making use of equations 

(23) and (24), we obtain  
( ){ } ( ){ }[ ]

[ ] 0eeec        

eememc
)1p2(iii1

1

)1N2(ii2i2
1

=+α+α+

γ+α−γ−ω+γ+α−γ−ω
+θθ−θ

+ϕ−ϕϕ−

  (26) 

Know when we substitute equations (25) into equation (13) and making use of 
equations (23) and (24), we obtain 

( ){ } ( ){ }[ ]
[ ] 0ec        

e  e e Mee Mc
)1N2(i

1

)1p2(i2ii2i2i21
1

=α+α+

µ+α−µ−ω+µ−α−µ−ω
+ϕ−

+θθ−θ−θ−θ

  (27) 

When we solve equations (26) and (27) together, then we obtain the general equation 
of motion for the coupled crystal slabs in the following form 

    
( )

         0)
2
1p(cos)1N(sin

2
sin     

)
2
1N(cospsin

2
sinpsin

2
sin1Nsin

2
sin2

=−θ+ϕ
ϕ

µ
α

−

+ϕθ
θ

γ
α

−θ
θ

+ϕ
ϕ

  (28) 

Relation (28) is a general equation of vibration for longtudinal vibrations of two 
coupled crystal slabs with different atoms and different coupling constants, coupled 
together and forming a system of two-dimensional crystal slabs, and is valid for any atom 
in the slab. 

 
Special Cases:  
1. When β = 0 , τ = 0 i.e. α = 0  

This Means that we have uncoupled two slab-shape chains with one another, after 
substituting in equation (28) we obtain:  

0)1N( sin
2

sin =+ϕ
ϕ

  (29) 

and  

0p sin
2

sin =θ
θ

  (30) 
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Which is in full agreement with (Mossa, 2003).  
2. When m = M, this means β = β1 = β2 , τ = τ1 = τ2  and  α = ى = م .  

This leads to a slab-shape atomic chain consisting of identical atoms and identical 
coupling constants.  

Substituting all these in equation (28) and using p = N + 1, we obtain:  
01)  (N cos2 =+θ   (31) 

and  

01)  (N sin
2

sin =+θ
θ

  (32) 

Equations (31) and (32) shows full agreement with (Gasagraude,1981;Jager, 1988).  
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