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Abstract

In this paper a higher order finite layer formulation based on the
auxiliary nodal surface (ANS) technique for a forced vibration analysis of
rectangular plates is presented. The forced vibration analysis has been
performed using the Newmark integration method for investigating the
vibration characteristics and finding the response of rectangular plates
under the action of dynamic loads. The forced vibration of the rectangular
plates subjected to moving and impact loads has been studied.

Several examples have been studied to show the good performance
of the higher order finite layer with one ANS for forced vibration analysis
of plate.
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Notation:

a, b         Length and width of plate

[B]          Strain matrix

[C]          Coefficient matrix for displacement function

c              Thickness of plate

[D]          Elasticity matrix
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DAF        Dynamic Amplification Factor

E             Modulus of elasticity

{f} Displacement function

h            Thickness of layer

m, n        Particular harmonic number in X and Y-direction

[M] Mass matrix

r, s         Specified number of harmonic terms in x and y-directions

[S]          Stiffness matrix

Vectors of nodal displacements, velocities and Accelerations
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x, y Global coordinate in length –wise and width-wise  direction

Xm, Yn   Harmonic function in x and y-directions

z           Global coordinate in thickness -wise direction

}{ Eigen vector

ρ Mass per unit volume

ν Poisson's ratio

ω Natural frequency (rad/sec)

Introduction:

Rectangular plates are the main parts in various structures as
bridges, hydraulic, water tanks…. etc; in these structures the plate is an
important component in carrying directly the applied loads.

The dynamic behavior of the structure is defined by a special
frequency spectrum consisting of an infinite number of natural
frequencies and mode shapes which can be found by knowing the



geometrical shape, mass distribution, stiffness and boundary conditions of
the plates [1].

It is necessary to understand the dynamic response of different
type of rectangular plates such as isotropic plates, orthotropic plates,
sandwich plates and laminated plates because of greater increase in the
dynamic deformation compared to the static deformation.

Plates may be subject to dynamical effects in the form of loads,
which lead to vibrate the plate. These loads may be moving forces on the
surface of the plate, its location may be fixed on the plate but its
magnitude or its direction is changing with the time such as the impact
loads and explosions. There are many cases of the applied loads on plates
as uniformly distributed loads, patch loads and concentrated loads. …etc.
It is of necessity to consider the dynamic effect of these loads on plates in
the structural analysis and design because of preventing the effects of the
applied loads to be accompanied with any damages which may lead to
failure.

Many researchers have studied the effects of some parameters on
the vibration of plates subjected to dynamic loads. In 1982 [2], analytical
results are found for the dynamic interaction of an elastic flexural plate
and an elastic half-space subjected to harmonic seismic waves.
Displacements and contact stresses are found for square, massless plates
having a particular range of flexural stiffness and subjected to incident
waves oriented parallel to either an edge or a diagonal of the plate. It is
found that the plate exhibits additional resonance.

At the beginning of nineties of the last century and especially in
1990 [3] an algorithm based on a finite element approach has been
developed by Mechael and Ting  to study the transient response of
rectangular plates having arbitrary boundary conditions and subjected to a
moving force. Thin plate theory is used for the plate model with no
restriction is placed on the loading conditions. The algorithm accounts for
the complete dynamic interactions between the moving loads and the
plate. Therefore, the method can be applied to the general moving mass
problems and also to the simplified moving force and static problems.
The dynamic response of isotropic rectangular plates, composite
laminated plates and shell structures under the action of low velocity



impacts was investigated by Liu et al. in 1997 [4] who used nine-node
finite elements. The histograms were drawn for the contact stress,
displacement, and contact force. The researches found that the low
velocity impact phenomena can be represented by using the finite element
model. Iu et al. performed a study in 1998 [5] on the non linear vibration
analysis of thin plates in presence of initial stress, by using spline finite
strip method. The forced vibration has been studied under existence of
initial stress and damping of the plate.

The deflection response of plate lied on an elastic foundation and
subjected to an effect of a moving accelerated loads has been studied by
Huang and Thambiratnam in 2001 [6] by using the finite strip method in
analysis. This study refers to that when the load contacts the surface of
plate then the structure behaves such as it is subjected to a suddenly
applied load.

The dynamic behavior of orthotropic rectangular plates under the
action of a moving force has been studied by Law et al. in 2003 [7]. The
plate was supported on two parallel edges, the analysis was based on
Lagrange equation. The authors studied the effects of some parameters on
the dynamic response of the plates as vehicle velocity, dynamic
amplification factor, plate length and the location of the moving force.

In the present study, a higher order finite layer with a second order
polynomial has been used for the force vibration analysis of plates.
Effects of many type of dynamic loads on the response of a rectangular
plate has been studied, such as moving loads and impact loads.

Finite layer method:

The finite strip method pioneered in 1968 by Y.K. Cheung is an
efficient tool for analyzing structures with regular geometric platform and
simple boundary conditions. Basically,
the finite strip method reduces a two-
dimensional problem to a one-
dimensional problem. By selecting
functions satisfying the boundary
conditions in two directions, the



philosophy of the finite strip method can be extended to layer systems.
The resulting method is called the finite layer method (FLM). The
method was first proposed by Cheung and Chakrabarti (1971)[8]. The
finite layer method is useful for layered materials, rectangular in
planform. The higher order layer can be produced by introducing an
auxiliary nodal surface at mid-distance between the upper and the lower
surface of the lower order layer[9]. To illustrate the method, (Fig. 1) is
considered. (Fig. 1) Finite Layer Method

Let hzz / then the lateral displacement component of the
higher order layer, can be expressed as [9, 10]:
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mnmn ww 21 , and mnw3 are displacement parameters for surface 1, auxiliary

nodal surface and surface 2, respectively. The functions mX and nY are
taken as terms in a trigonometric series, satisfying the boundary
conditions. In this manner a three-dimensional problem is reduced to one-
dimensional problem with considerable saving in computer storage and
computational time [8].

By linear theory, the (x, y) displacement components (u, v) are
linearly related to the derivatives of w ; that is
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Thus, as with Eq. (1), then
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in which mX  and nY  are the first derivatives of mX and nY respectively.
The displacement vector is
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where

  T
mnmnmnmnmnmnmnmnmnmn wvuwvuwvu ],,,,,,,[ 333222,111

The strain-nodal displacement relationship is obtained as[11]:
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The stress-strain relationship is
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By applying the minimum total potential energy, the stiffness matrix can
be derived in the following form
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where mnpqS ][ is the generalized stiffness matrix, which has the
following expanded form:
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Consistent mass matrix of the layer:

Studies have clarified that the consistent mass matrix is preferable
in dynamic analysis problems because it is gives a more accurate results
than the lumped mass matrix [12].

If the mass is distributed uniformly through each layer then each
acceleration leads to generate a distributed inertia force which is [13]
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where  is the mass per unit volume, the general displacement f
depends on time.

Corresponding to natural vibrations, all points of a vibration system move
in the same phase or in ordinary mode then [14, 15]:
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Substituting Eq. (12) in Eq. (11), then
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By dropping )sin( t from Eq. (13)[16], then
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By applying the principle of virtual work the nodal forces which
are equivalent to any uniformly distributed load as }{q can be found as
follows[17]:
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Forced vibration analysis of plates:

When the plate is exposed to the dynamical loads then the plate
movement can be expressed by a differential equation called forced
vibration equation and has the following form

}{}].{[}].{[}].{[ RSCM    ....………..17

where ][M , ][C , ][S and }{R are the consistent mass matrix, damping
matrix, stiffness matrix and vector of external applied forces on the plate.
The damping matrix can be found in a simplified manner as it is given by
(Rayleigh), the suitable mathematical shape of calculating the damping
matrix for a plate is as follows [18, 19]
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and ( ) is the damping ratio and ( 1 , and 2 ) are the first and the
second natural frequencies of the plate and given in (rad/sec). Eq. (17)
can be solved by various mathematical methods which may be explicit or
implicit and each of them includes time integration  manner [20]. The
implicit integration manner is stable and unconditionally; the Newmark
method is one of them and used in this study. Thus it can be express the
relation between values of derivatives of vector }{ at the time ( tt  )
and the values at the time ( t ) as:
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To guarantee the suitability and accuracy of the Newmark method the
values of its parameters ( , and  ) are taken as follows:

2)5.0(25.0  

5.0
....………..20

and the best value of these parameters are [21] ( 25.0 , 5.0 ). Values

of variables ( 0a to 7a ) depend on  and  .

Two cases of applied loads are considered which are given as
follows:

1- Moving force: It is a simple model of load which consists of a lonely
single force moving on the surface of a plate. The force may represent a
vehicle or any moving things that have a mass effecting on the plate and
producing a dynamic vibration of it. If ( vm ) is the moving mass on plate
and ( g ) is the gravity acceleration then the moving force (weight) can be
written as [3, 22]

gmp v .

....………..21

Thus the force vector for a each layer is

TpR }0,0,0,0,0,0,,0,0{}{  ….………..22

2- Time dependent load: The plate may be exposed to time-varying loads
as impact loads, explosions and seismic forces. These loads are
represented by uniformly distributed loads or patch loads in this study.
The used vector for dynamic load in the finite layer method is given as:
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Where ( q ) is the value of the uniformly distributed or patch load.

Steps for analyzing forced vibration:



The forced vibration can be analyzed by finding the solution for the
Eq. (17), by taking the value for }{  as the change in value(ascending

or descending)  of the vector }{ and this change occurs during the time
step from ( t ) to ( tt  ). By using Newmark integration method then the
relation can be expressed between the values of derivatives of vector }{
at a time ( tt  ) and the values at a time ( t ) as follows:
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by using the parameters ( , and  ), the variables in Eq. (23) can be
expressed as follows [23]:
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The values for initial velocity and displacement is assumed equal to zero
thus the values for initial acceleration vectors at time ( 0t ) are as
follows:
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Then the applied stiffness matrix can be formulated as
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..………27

Thus it is possible at any time step to calculate the dynamic response in
the following steps:

1- Calculate the applied force vector at time ( tt  ) as follows:

…...25
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2- Calculate the values of displacements at time ( tt  ) as follows:
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3- Calculate values of vectors of accelerations and velocities at time (
tt  ) by Eq. (24).

In the problems which are related to plates excited by moving forces the
location of the moving force on the surface of the plate is found at each
time step by finding the (x, y) coordinates for applied point of force as
follows:
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where ( ttx  , and tty  ) are the coordinates of the force contact location

on the surface of the plate. ( x
tv , and x

tv ) represent the acceleration and the

velocity of the moving force in X-direction, ( y
tv , and y

tv ) represent the
acceleration and the velocity in the Y-direction.

Numerical applications:

A- Analysis of plate excited by suddenly applied uniformly
distributed load: The response of a simply supported square plate has
been investigated, the material and geometrical properties of the plate are
as follows :

..………28
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Plate length (a) = 10 in  = 0.254 m

Plate thickness (c) = 0.5 in =0.0127 m

Density ( ) = 0.259 x 10-3 lb.sec/in4 = 4.8x10-11 kg.sec/m4

Modulus of elasticity (E) = 10 x 106 psi = 68947547.9 kN/m2

Poisson's ratio ( ) = 0.3

The uniformly distributed applied load is shown in Fig. (2). The
higher order finite layer method is applied for analysis of the plate and
the result is compared with that found by (Huang) [24] who used the rule
of Gauss-Legendre 3x3 points in his analysis, the comparison is shown in
Fig. (3). It is found that the finite layer results are in good agreement with
the finite element results.

Fig. (2) Suddenly applied uniformly distributed load (Example-A)



Fig. (3) Histogram of central response of plate (Example-A)

B- Analysis of plate excited by suddenly applied patch load: The plate
shown in Fig. (4) is analyzed dynamically by the higher order finite layer
method, the plate is subjected to a patch load of magnitude of ( 2 psi)
and the geometrical and material dimensionless properties are given in
Fig. (4). The present results are compared with the previous results as
given by (Huang) [24] in Fig. (5). It is found that the finite layer results
are in good agreement with the results of reference[24].

Fig. (4) Suddenly applied patch load (Example-B)
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Fig. (5) Histogram of central response of plate (Example-B)

C- Forced vibration analysis of plate subjected to a moving single
force: This example includes the analysis of undamped forced vibration
of a square plate subjected to moving force (2 lb). The force is moving
with a velocity (234 mile/ hour (mph)) on the central line of the plate as
in Fig. (6). The dimensions for the plate are given as follows:

psiEincinbina 61030,1.0,4,4 

3.0,/sec.001.0 42   inlb

Figs. (7) and (8) show the comparison of the results found by using (4)
higher order layers with the results found by (Ting et al.) [3] who used
the manner of structural impedance, the results are represented by
dynamic magnification factor (DAF) and normalized displacements.
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Fig. (6) Square plate subjected to a moving force

Fig. (7) Normalized displacements for a plate subjected to moving
force
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Fig. (8) Relation between dynamic amplification factor with force's
velocity

D- Parametric study: The effects of damping of plate on the response of
it has been considered in this example, this is done by considering the
plate properties in example (C) but with using different damping ratios.
The relations between the normalized displacements and the velocity of
the moving force with the damping ratio have been found by making
diagrams of Figs. (9-11).
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Fig. (9) Relation between DAF and damping ratio

Fig. (10) Relation of moving force's velocity and DAF with damping

ratio

Fig. (11) Effect of damping on the normalized displacements of the
plate
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Conclusion:

In the present study, the higher order finite layer method was used
for dynamic analysis of simply supported plates that have a single span.
According to this study the following points are concluded:

1- In the case of studying the vibration of a plate subjected to moving
loads it is clear that by changing the value of the damping ratio of the
plate the critical velocity remains constant, the critical velocity is the
moving force velocity at which the magnitude of the dynamic
amplification factor is a maximum.

2- The normalized displacement is increased by increasing the moving
distance of the moving force on the surface of the plate until it reaches a
specific limit (approximately (0.7) of the path of the moving force) after
that it begins in decreasing.

3- By increasing the damping ratio of the plate, the normalized
displacement will be decreased.

4- The dynamic amplification factor increased by increasing the velocity
of the moving force until the velocity reach the limit of critical velocity
then the curve of dynamic amplification factor will be descending.

5- The relation between the dynamic amplification factor and the
damping ratio is in reverse relation. This shows that by increasing the
damping ratio the dynamic amplification factor will be decreased and also
the normalized displacement will be decreased.
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